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The real and imaginary parts of the kernel for the fourth order vacuum polar
ization are calculated for all values of the four-dimensional energy momentum 
vector. If an expansion in powers of the square of this quantity is used, the 
first coefficient agrees with a result previously obtained by Baranger et. al.

I. Introduction.

In a previous paper, one of us1 has developed a formulation 
of renormalized quantum electrodynamics that is slightly 

different from the standard techniques used by most authors. 
This modification was introduced because of its convenience in 
discussions of general principles. It has been applied, for example, 
to a discussion, avoiding perturbation theory, of the magnitude 
of the renormalization constants.2 In the present paper, we wish 
to show that the new method can also be used with advantage 
in practical calculations in which perturbation theory is applied, 
and, as an illustration, the fourth order vacuum polarization 
has been chosen. Baranger, Dyson and Salpeter3 have com
puted those terms in this effect which are important in the Lamb 
shift. They present, however, only the result and very few inter
mediary steps of the calculation. On the other hand, we attempt 
to give a fairly detailed account of our calculations, and compute 
not only the terms of immediate experimental interest, but also 
the complete vacuum polarization kernel as a function of the 
four-dimensional momentum. As will be seen later, our calculation 
is simplified to a certain extent by the fact that we can use the 
result of an earlier calculation of the lowest-order radiative 
corrections to the current operator4 and thereby avoid some 

1 G. Kâllén, Ilelv. Phys. Acta 25, 417 (1952), in the following quoted as I.
2 G. Kâllén, Dan. Mat. Fys. Medd. 27, no. 12 (1953).
3 M. Baranger, F. J. Dyson, and E. E. Salpeter, Phys. Rev. 88, 680 (1952).
4 J. Schwinger, Phys. Rev. 76, 790 (1949).
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ind

integrations. Since the main work involved in the calculation of 
a high-order effect is connected with the integrations over the 
so-called “Feynman auxiliary variables’’, a simplification at this 
point is not without interest. A further advantage of our method 
is that the questions of regularization1 and of the so-called “over
lapping divergences’’2 arc completely avoided. Finally, due to the 
application of the known expression for the current operator, we 
need not carry out any explicit mass renormalization in our 
calculations.

IL General Outline of the Method.

We start from the following formulae given in 1 :

■)|<>>= 72^X4 77(p2) + 7T(0)- e (p) 77(p2))j/z (p), (1)

II <P2) II = -P2
i,x da n (- a) 
Jo a (a + p2)

n(p2) = \ 2 2?<°LmI°>- (3)— 3 p“ '

The notation is the same as in I and will be used here without 
further explanation. If (he matrix elements of the current opera
tor arc expanded in powers of e,

the first non-vanishing contribution to the function 77 (p2) will 
be

1 W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949). The regularization 
of the fourth order vacuum polarization has been discussed by E. Karlson, 
Arkiv f. Fysik 7, 221 (1954).

2 A. Salam, Phys. Rev. 82, 217 (1951). For the special problem of fourth 
order vacuum polarization, the overlapping divergences have been discussed by 
R. Jost and J. M. Luttinger, Ilelv. Phys. Acta 23, 201 (1949).
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This expression can 1)0 computed easily and gives

(6)

X

r«'» (p2) _ 77(0) (0) =

/7(t)(p2) =

1 Cf., e. g., G. Kâllén, Arkiv f. Fysik 2, 371 (1950).
2 For the definition of particle numbers for these physical states, cf., e. g.,

G. Kâllén, Physica 19, 850 (1953).

(8)

n(" (p2) - O)/ >
<’(P) =

4/112

V

!
/1

fhe subsequent term in 
of order e4,

2 0b'/?\z^^z10> + complexconjugate. ( 10)
o p //z) = p

the expansion of the function II(p2) is 
and contains the following terms:

e2
1 2 7?

op p(z> p

j 2
T G (—p1 2 * —4 m2),

P

fhe expansion of the current operator has been computed ear
lier.1 From these results it can be seen that the term (9) gets 
contributions from states with one in-coming pair and one in
coming photon.2 These matrix elements are

(H)

fhe notation in the last expression is self-explanatory, except 
possibly for the quantities u(±)(ç). These are the normalized 
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plane-wave solutions of the free-particle Dirae equation. The 
index (+) refers to solutions with positive energy and the index 
(—) to solutions with negative energy. The vector e is the po
larization vector of the photon; V is the volume of periodicity 
and fi a small photon mass introduced to handle infrared diver
gences. In the computation of the function 77^ (P2)» we must 
“square” the expression (11) and sum over all states where 
7 + q + <]' = p. Using well-known properties of the functions u, 
and taking the limit V-*oe,  we can write this sum as an integral

1 Footnote 4, p. 3.

0 I jjP I q, q', k> <k, q, q | 0 > =
q + q' + k = p

e4 dk dq dq ô (p—q — q—k) ô (q2 + in2) 0 (q) ô(q'2 — in2) 6 (q)

X Ô (k2 + p2) 0 (k) Sp / , J iy(q + k) — m (iyq + m)\y ——------ —
\ r 2 qk— fi“

~7/.
iy (q' + k) + ni

iy (q + k) — in
~7k 2 qk-p2

The evaluation of this integral, which is the main task in our 
computation, is given in a later paragraph.

The first approximation to the current, has matrix ele
ments which connect the vacuum only to states with one in
coming pair. Hence, the expression (10) will reduce to a sum 
over states with one in-coming pair

77^ (p2) = y< v'X 9|yí?|()> + complex conjugate. (1
d P~ q + (i = i>

As has been mentioned in the introduction, the matrix elements 
< 0 | 7, 7'> have been computed by Schwinger.1 We write
his result as

- «(p2))] < •> I </• — ,T— (<?,< — '/<) [S(p2) + isi .S (p2)] <01 v>(<,)v><") I <7, </’>,
' 2 in f

(1
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(15)

l'he connection between the functions I< (p2) and 7? (p2), and be
tween S (p2) and S (p2), is the same as the connection between 
n (p2) and 77 (p2), which is given in Eq. (2). This is a conse
quence of the “causal” structure of the theory which says that 
the value of the current in one point x can depend only on the

(16)
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previous history of the system inside the retarded light-cone be
longing to .r. If Eq. (14) is written in .r-space, we get a relation 
of the form

< 0 I q, q', - \ d.r'F(.r .r') < 0 \j("} (,r' ) | q, q' >

(14a)

Causality requires F (.r) and G (.r) to vanish if .r0 < 0 and this 
gives, in a well-known way, the relations involving the Hilbert 
transformations. This oilers a new possibility of computing the 
matrix element under discussion by first computing the ‘’imag
inary parts” R (p2) and 5 (p2), which can be obtained by inte
grating over finite domains in momentum space and, subse
quently, computing the “real parts” with the aid of Hilbert 
transformations. Actually, a calculation of this kind has been 
performed. However, it has not been found to be much simpler 
than the standard methods for this problem. On the other hand, 
arranging the computation in this way is certainly not a more 
complicated procedure. We will not insist on this point here, 
but accept the results (14) — (18) as they stand. Consequently, 
the computation of the function 77^ (p2) will be reduced to 
simple algebraic manipulations of these expressions. The function 
0 (.r) in (16) is defined by the integral

Hereby it is supposed that the argument x is real, i. e. that 
4 m21 + — > 0. This will be sufficient at this stage. The integral
P

0 (.r) has many interesting properties which will be of some 
use in our calculation and that are discussed in the Appendix.

We now write the function 77æ (p2) as

-/<(<)) + S(0)] + 2 S (p2) .V (p2),
(20)



Nr. 17 9

where

A(P2)

X ó (g2 + ni2) O (q) ô (q'2 H- in2) O ( q') (qq' + in2).

The last expression is easily computed

e2 I 4 m2\
X (p2) = ~-2 H + — 0 (- p2 - 4 in2).

24 ?r“ \ p“ /
(22)

Collecting all these results, we have

l+ô2, 1+Ô
— log ----- - l(3-á2)(l +d2)(ø( l-á)

1 +»i

7l2 1 ,
- — 4- - lo

4 4
„2
r>

1 + Ó
1 — Ô

where

(24)

III. Discussion of the Part IT^ÍP2)-
The remaining part of the function /7 (p2), the integral (12), 

can be treated in the following way. We first compute the trace 
of the y-matrices. This is a straightforward calculation and the 
necessary work can be considerably reduced by performing first 
the summations over the indices p and 2. This can be done with 
the aid of the well-known formulae

yXyV1Yv2- ■ ■ ■ yr2„ + iy;. = — 2 yViii + i .... yVtyv¡ (25)

(26)

(23)
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Ehe complete trace can then be written

s = S(1) (<7> q) , S(i) (q'> q) . -S(2) (q, q') + s(2> (g, g)
(2 7Á—/i2)2 (2 q' k— p-)2 (2 qk — («2) (2q k — p2)’

5'<u (7, q) = — 32 [kq-kq' + 2 in2 qk + m2 q'k + m2 (qq' — 2 zn2)j,

S,2) (</, </) = —16 [2 (çg')2 —4 m2- qq' + 2 (kq + kq') qq' — in2 (kq + kq')].

Terms containing /z2 have been dropped in (28) and (29), as 
they will obviously vanish in the limit p —> 0.

Our next task is to compute an integral of the form

J — \ dk dq dq' ö (p— k— q — q') ô (ç2 + m2) ô (q'2 + m2) ó (k2 + /z2)

X Ö (q) 0 (q') 0 (Å-) F (qk, q'k, qq').

'l'his can conveniently be done in two steps. We first consider

/ (p'2, kp') = j¡ dq ô (ry2 + in2) 6 (q) ó((p' — q)2 + ni2) 6 (p' — 7) 

X F (qk, p'k — qk, p'q — q2).

This is a finite integral and we compute it in the special coordinate 
system where the space-like components of the vector p' vanish. 
We then obtain

W e now write this result in an invariant way, as

l(p2,kp') = X, ni2-F — p'2\o(—p'2- A1112),
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(33 a)

and treat the next integration similarly. The result is

J = \dkô(k2 + p2)0(k) I((p — k)2, kp + p2) =

(34)

Applying this technique to the integral (12), we get

To obtain these expressions, we have introduced the quantities 
y and z into (27), which becomes

The quantity A will stay finite in the limit p —*■  0 and can be ex
pressed in elementary functions. After some straightforward 
calculations we get the result
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A = p4 2d (5 — 3 ó2) (5 4- 6 d2 3 d4) log I. (39)
64 [ '1 — dj

The quantity li is a little more tricky to handle and the limit
/z -> 0 cannot be performed in all terms. We write (37) as

(40)

where
(41)

(42)

1-p!

(43 a)e

dependence on /z in /(z)

/ 1
/(z) = (44)

y

= t-1

- z2 d2 ( 1
(45)

dt
d

d
d2z2

o
y~

i
i

- £2)

logarithmic < 
following way:

-d2
-y
'-d2)

/.d2
?

VO

The term containing the 
can be split oil’ in the

1
i-yJ

£ 2
o 

y

d2
y
-d2

B(l) = 2/(1),

,-£d2 
ê ^y 
-l2z2

In the first integral, we make the transformation 
and rewrite it as

B = Ip4 (3
8 1

2 t-
r, o

d
1 — Z2 d2 1

♦ '()

u
2(!/a-
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The remaining integrations can now be performed without 
difficulty, and I (’) is found to be

The last integration in (42) introduces again the function 0(.r). 
With the aid of the formulae given in tin*  Appendix we can write 
the result as

(47)

log

^l)(P2) =

<5 (3 — ô2) 1
(48)

2

depending onthe termsthat

3
3 2

(49)

19
24

Adding 
cancel.

1 — à
1 + ó

part of the calculation is 
previous residís, we get

and (23), we find 
wav we obtain

+ - 7T2
4

e4
48 7T4 [8

(48)
In this

purely algebraic in

1 + ó ’
1 — Ô

9(1 ó).(1 + ó)2
4Ô

ó4 
ó2)3.

i ■loa logb 1 — <5 0

i m■ æg 
0

?'2)

+55 Ô*  -,)4
72

flic remaining 
nature. Collecting

U<39

Ä2\ 1 64
-2(3-á)10g(l-^

1 7 ó2) + -- (33 — 10 d2 + ó4) log 1
1 (1 7 b 1 - ó

ó2, 04log
(1

3 •> ■ ,- TT“ -p log
4

- 3 0 [ -9 00
\ 1+0/ \1 + 0/

. (i + ¿y iog «h 8 ó2
1 + (5 33 23 £, 23 1 c« / 3 d4\

log — ó2 - ó4 + -ó6 + - + ó- --
1 — Ô 16 + 8 16 6 ' 2 2/

/3 1 0 \ — / 1 -- M / 1 — ó \ % 2
-+ ó2- -ó4 4 0 - 4- 2 ø ------- +

V2 2 ’ 1 -F à \ 1 + ó/ 2
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((
e2

4 X
(49 a)

This is our expression for the imaginary part of the kernel (1). 
According to (2), the real part is obtained after a Hilbert trans
formation of this expression. This will be discussed in the next 
paragraph.

IV. The Real Part of the Vacuum Polarization Kernel.

So far, all our results are given as functions of the quantity ô 
defined in (24). It is therefore convenient to introduce a new 
variable of integration instead of a in (2). If we put

we get

VO

(50)

(51)

Not all the integrations in (51) can be carried out explicitly, with 
the result expressed by elementary functions or by the function
0 (.r). The new integrals which appear can be written in the
standard form

F (,r, y) = \ log 1 1 + xt | • log | 1 + yt |. (52)

vo

Ail the necessary integrals over the function 0(a) can be ex
pressed in terms of this F(x, y)

0(u) log (53)

In our final result, one of the variables in F (.r, y) has only a 
very small number (three) of different values. We therefore 
introduce the following three integrals, each of which depends 
on onlv one variable:
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The remaining integrations arc then straightforward, and not 
too time consuming. The result can be written as

13
1083 n I

+ <5 (3 1
1

I + ô 1, 1 + Ô
________ -U _ løcf
l-ô| 2 °|l~ó|

log
64 ó4

Ï^Fp.
+ (3 + 2 ô2 - ô4) F (ô2) + ¿ G (Ó2) — H (Ó2)

(57)

If this expression is expanded in powers of ó-1, the first non
vanishing term will be of order ô~~ . The same conclusion can 
also be obtained from a study of Eq. (51). If this expression is 
expanded in powers of 0~~l, we get immediately

77(1)(/>-)-/7<l)(0) = -^ÁzdzII^ÍÓ = :)+■■■■
d“i

(58)

The numerical coefficient of the first power of ó-2 has been 
computed from Eq. (57) and with the aid of the integration 
indicated in Eq. (58). The agreement of the results serves as 
a check on the calculations. In either way we obtain
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77<l)(p2)-77(L)(0) = 1 a2 82
ó2 TT2 81

j)2 a2 41 
nr 7t2 1 62

•••.(59)

This also agrees with the result obtained by Baranger, Dyson, 
and Salpeter.1

In Eq. (57) it is supposed that ó is real, that is, p2 is either 
positive or less than — 4 m2. For () < p2 < 4 in2, ö will be 
purely imaginary. In this ease we have to substitute arctangent 
functions for logarithms, according to the following rules:

4 arctang2-,7l2 0 ( 1 — Ó) *

(60 a)

(60 b)

ó
1
1

ó I ?i2
0/ 4

— 7l2 0 (1
4

64 ó4
i-52|3

log

a ret a ng 2 (2 a reta ng ?/)

1
+ arctg -

*7

64 r/4 
(î+?y

v CO 5Ç“7 sin (n.r) (60 d)

At the point p2 = — 4 m2, or à — 0, the expression (57) has a 
logarithmic singularity. If, during the calculation, the photon mass 
p had been kept different from zero in all places, our result would 
have shown a finite peak at this point. For practical applications, 
the weak logarithmic infinity will not be very harmful, as one is 
in general interested in convolution integrals involving the function 
I/(/r)— 77(0). In such expressions, the result (57) will be suf
ficient. For large values of | p2/m2 , our function behaves as 
log2 I p2/m2 . Fig. 1 gives a qualitative idea of the behaviour 
of the fourth approximation of the vacuum polarization kernel 
as a function of —p2¡m2. A figure of the corresponding behaviour 
of the functions 7/(0)(p2) and //’"’(p2)— 77((”(O) would be rather

1 Footnote 3, page 3.
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Fig. 1. Qualitative behaviour of the e4 approximation of the real and of the imag
inary parts of the vacuum polarization kernel.

similar to Fig. 1. The only qualitative difference would be that 
the function 77(0)(p1 2) vanishes at the point —p2 = 4 m2 and that 
the function 77(0)(p2)—7Ÿ(o)(O) has a finite peak at this point.

1 Cf., e.g., K. Mitchell, Phil. Mag. 40, 351 (1949) and W. Gröbner, N. Hof- 
reiter, Integraltafeln, Wien and Innsbruck, 1950.

Dan.Mat.Fys.Medd. 29, no 17.

Appendix.

In the following are given some formulae involving the 
function 0(x), defined in Eq. (19). Although practically all 
these expressions can be found in the literature,1 we add this 
summary for the reader’s convenience.

If X is real, our function is defined by

If we consider

(A. 1)

(A. 2}

2
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and make the variable transformation t = z , we get the funda
mental relation

An integration by parts in the definition (A. 1) will give another 
useful formula

2
or

0 (x) + ^ (- 1 x) — ——- 4~ log J X*  I - log I 1 + .r
o

(A. 5)

(A. 6)

Besides (A. 4) and (A. 6), we also mention the formula

(A. 7)

Another relation which has been of some use in the calculations
can be obtained in the following way:

0(.l) (A. 8)
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The transformation 1

0 (æ)  ø (  ,r) =

ti2 0 (— 1 — æ)1 4- t

i)
(D

log

log

+ f = - ---- — transfers this integral to
1 + z

.t2 l 
ï“L

7l2
4

 2x
1+z

(A. 9)

Using (A. 6), we can write (A. 9) as

0 (x ) — 0 (— x) =
/— — 7l'¿ 6 (— 1 — x) + 0 Í

(A. 10)

For complex values of x we can still define the function 0(x) 
as the integral (A. 1), making this definition unique with the aid 
of a cut along the real axis below the point —1. This function 
fulfils an equation similar to (A. 4),

0 (x) + øi-j = (A. 11)

where the definition of the logarithm is made unique by the 
prescription just mentioned. From (A. 11), we conclude that

(A. 12)

For X < 1, we have the power series expansion

(A. 13)

2*
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From (A. 13), it follows that

= 5 Sin-^ - ?/’(#)• (A. 14)

Numerical values of 0(.r) for real x can be obtained from the 
paper by Mitchell. The function if) (&) in (A. 14) has been 
tabulated by Clausen1.

1 T. Clausen, Jour. f. Math. (Crelle) 8, 298 (1832).
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